Improving Evolvability through Generative
Representations

Gregory S. Hornby

QSS Group Inc., NASA Ames Research Center
Mail Stop 269-3, Moffett Field, CA 94035-1000
hornby@email.arc.nasa.gov

Abstract. One of the main limitations of computer automated design
systems is the representation used for encoding designs. Using computer
programs as an analogy, representations can be thought of as having
the properties of combination, control-flow and abstraction. Generative
representations are those which have the ability to reuse elements in an
encoding through either iteration, a form of control-flow, or abstraction.
Here we argue that generative representations improve the evolvability
of designs by capturing design dependencies in a way that makes them
easier to change, and we support this with examples from two design
substrates.

1 Introduction

Computer automated design systems have been used to design a variety of dif-
ferent types of artifacts such as antennas [1], flywheels, load cells [2], trusses [3],
and robots [4]. While they have been successful at producing simple, albeit novel
artifacts, a concern with these systems is how well their search ability will scale
to the larger design spaces associated with more complex artifacts. In engineer-
ing and software development, complex artifacts are achieved by exploiting the
principles of regularity, modularity, hierarchy and reuse.

While the optimization algorithm can affect the degree of modularity, regular-
ity and hierarchy in a design, their manifestation is limited by the representation
used to encode an artifact. For example, with the parameterization of a table
shown in figure 1, no modification to the search algorithm can affect the degree
of reuse in an evolved design, nor is the hierarchical construction of building
blocks possible.

There are many different ways of converting the encoding of a design (the
genotype) to the actual design (the phenotype) but since it is always performed
through a computational process a representation can be thought of as a com-
puter program. With this analogy, features of programming languages can be
used to understand and classify different representations. From [5], program-
ming languages have features of:

— Combination: Languages create the framework for the hierarchical con-
struction of more powerful expressions from simpler ones, down to atomic
primitives.

p2

p3 p3

p4 pS p6 p7

Fig. 1. A parameterization of a table.

— Control-flow: All programming languages have some form of control of
execution, which permits the conditional and repetitive use of structures.

— Abstraction: Both the ability to label compound elements (to manipulate
them as units) and the ability to pass parameters to procedures are forms
of abstraction.

In implementation, these elements can be parceled out to different mechanisms,
such as branching, variables, bindings, or recursive calls, but are nonetheless
present in some form in all programmable systems.

The meanings of combination, control-flow and abstraction translate almost
directly from properties of programming languages to properties of design repre-
sentations. Combination refers to the ability to create more complex expressions
from the basic set of commands in the language. It is not fully enabled by mere
adjacency, such as proximity in strings utilized by typical GA representations,
instead the subroutines of GLib [6] and genetic programming (GP) [7] allow ex-
plicit combinations of expressions. Two types of control-flow are conditionals and
iterative expressions. Conditionals can be implemented with an if-statement, as
in GP, or a rule which governs the next state in a cellular automata (CA). It-
eration is a looping ability, such as the repeat structure in cellular encoding [8],
or embedded in the fundamental behavior of CA’s. Abstraction is the ability to
encapsulate part of the genotype and label it such that it can be used like a
procedure, such as with automatically defined functions (ADFs) in GP or auto-
matically defined sub-networks (ADSNs) in cellular encoding. Abstraction can
be seen when subfunctions can take parameters, as with ADFs.

Using these properties the different types of representations for computer-
automated design systems can be classified by how they encode designs. First,
designs can be split into parameterizations or open-ended representations. Pa-
rameterizations consist of a set of values such as dimensions of a pre-defined
structure as in the table in figure 1, and have no properties of combination,
control-flow or abstraction. Since one of the goals of automated design systems
is to achieve truly novel artifacts, we focus on open-ended representations, those
in which the topology of a design is changeable, because it is difficult for a param-
eterization to achieve a type of design that was not conceived of by its creators.

design representations

/ N\

parameterization open—endeq
representations

SN

non—generative generative
direct indirect implicit explicit

Fig. 2. Classes of design representations.

A fundamental distinction between open-ended representations is whether it is
non-generative or generative. With a non-generative representation each repre-
sentational element of an encoded design can map at most once to one element in
a designed artifact. The two subcategories of non-generative representations are
direct and indirect representations. With a direct representation, the encoded
design is essentially the same as the actual design, and with an indirect represen-
tation there is a translation, or construction process, in going from the encoding
to the actual design. A generative representation is one in which an encoded
design can reuse elements of its encoding in the translation to an actual design
through either abstraction or iteration (a form of control-flow). The two subcat-
egories of generative representations are implicit and explicit. Implicit generative
representations consist of a set of rules that implicitly specify an artifact, such
as through an iterative construction process similar to a cellular automata (CA),
and explicit generative representations are a procedural approach in which a de-
sign is explicitly represented by an algorithm for constructing it. This hierarchy
of design representations is shown in figure 2.

Both direct and indirect non-generative representations are limited in their
ability to scale to complex structures because with the increase in the size of the
genotype there is an exponential growth in the size of the design space and be-
cause the increasing number of dependencies in a design makes it more difficult
to make changes. In the first case, as a design grows in the number of parts the
expected distance (in number of parts) between a starting design and the desired
optimized design increases. Conversely, changing a single part makes a propor-
tionately smaller and smaller move toward the desired design. One consequence
of this is that as designs increase in the number of parts search algorithms require
more steps to find a good solution. Increasing the size of variation (by changing
more parts at a time) is not a solution because as the amount of variation is
increased, the probability of the variation being advantageous decreases. The
second case is similar: as designs become more complex, dependencies develop
between parts of a design such that changing a property of one part requires the
simultaneous change in another part of the design. For example, if the length

of a table leg is changed, then all of the other table legs must be changed or
the table will become unbalanced. Non-generative representations are not well
suited to handling these increases in size and complexity because their language
for representing designs is static.

Unlike a non-generative representation, a generative representation’s ability
to reuse elements of an encoded design improves the ability of search to navigate
large design spaces and improves scalability by capturing design dependencies
through the discovery of useful building blocks. First, navigation of large design
spaces is improved through the ability to manipulate assemblies of components
as units. For example, if adding/removing an assembly of m parts would make a
design better, this would require the manipulation of m elements of the design
encoding with a non-generative representation. With a generative representa-
tion, abstraction allows for these assemblies to be inserted/deleted through the
change of a single symbol, and iteration allows for the addition/deletion of mul-
tiple copies of groups of parts through changing the iteration counter. Secondly,
reuse of elements of an encoded design allows a generative representation to cap-
ture design dependencies by giving it the ability to make coordinated changes
in several parts of a design simultaneously. For example, if all the legs of a table
design are a reuse of the same component, then changing the length of that com-
ponent will change the length of all table-legs simultaneously. With a generative
representation the ability to reuse previously discovered assemblies of parts by
either adding or removing copies enables large, meaningful movements about the
design space. Here the ability to hierarchically create and reuse organizational
units acts as a scaling of knowledge through the scaling of the unit of variation.

2 Examples of Evolution with a Generative
Representation

That evolution with a generative representation improves the evolvability of
designs can be intuitively understood by looking at some examples. Figure 3
contains different tables that can be produced with a single change to an encoded
design. The original table is shown in figure 3.a and one change to its generative
encoding can produce a table with: (b), three legs instead of four; (¢), a narrower
frame; or (d), more cubes on the surface. With a non-generative representation
these changes would require the simultaneous change of multiple symbols in the
encoding. Some of these changes must be done simultaneously for the resulting
design to be viable, such as changing the height of the table legs, and so these
changes are not evolvable with a non-generative representation. Others, such
as the number of cubes on the surface, are viable with a series of single-voxel
changes. Yet, in the general case this would result in a significantly slower search
speed in comparison with a single change to a table encoded with a generative
representation.

That the evolutionary design system is taking advantage of the ability to
make coordinated changes with a generative representation is demonstrated by
individuals taken from different generations of the evolutionary process. The se-

(a) Original (b) Three corners.

(c) Narrower. (d) More surface cubes.

Fig. 3. Mutations of a table.

quence of images in figure 4, which are of the best individual in the population
taken from different generations, show two changes occurring. First, the rect-
angle that forms the body of the genobot goes from two-by-two (figure 4.a), to
three-by-three (figure 4.b), before settling on two-by-three (figures 4.c-d). These
changes are possible with a single change on a generative representation but
cannot be done with a single change on a non-generative representation. The
second change is the evolution of the genobot’s legs. That all four legs are the
same in all four images strongly suggests that the same module in the encoding
is being used to create them. As with the body, changing all four legs simul-
taneously can be done easily with the generative representation by changing
the one module that constructs them, but would require simultaneously making
the same change to all four occurrences of the leg assembly procedure in the
non-generative representation.

One other advantage of using a generative representation is that by encoding
an object through a set of reusable rules for its construction it is possible to
encode a class of designs. By evaluating an individual with different parameters

(a) Fitness: 348.) Fitness: 780.
) Fitness: 1450. (d) Fitness: 2192.

Fig. 4. Evolution of a four-legged walking genobot.

to its starting command, families of designs can be evolved, such as the tables
in figure 5 [9].

3 Conclusion

Here we defined three properties of design representations and have argued that
for computer-automated design systems to scale in complexity they must use
generative representations: representations which allow for the hierarchical con-
struction of reusable organizational units. To support this claim we presented
examples from our work in evolving tables and robots and showed that designs
encoded with a generative representation did capture some design dependencies
and enabled moving through the design landscape in more meaningful ways than
would have been possible with a non-generative representation.

While this comparison has shown how important reuse is for an evolutionary
design system to scale to complex designs it has not discussed how to achieve
it. The representation used here is a modification of Lindenmayer Systems and
is described in previous work [10,11]. But there are many ways of allowing
reuse in the representation — such as variations of cellular automata, models
of developmental biology, as well as actual computer programs — each with its
own strengths and weaknesses. For now it is premature to say which direction is
best, but as representations become increasingly more powerful in hierarchically

(a)

Fig. 5. Two tables from a family of designs.

encoding organizational units so too will computer-automated design systems
improve in their ability to produce ever more complex and interesting designs.

References

1.

10.

11.

Linden, D.S.: Innovative antenna design using genetic algorithms. In Bentley,
P.J., Corne, D.W., eds.: Creative Evolutionary Systems. Morgan Kaufmann, San
Francisco (2001) 487-510

Robinson, G., El-Beltagy, M., Keane, A.: Optimization in mechanical design. In
Bentley, P.J., ed.: Evolutionary Design by Computers. Morgan Kaufmann, San
Francisco (1999) 147-165

Michalewicz, Z., Dasgupta, D., Riche, R.G.L., Schoenauer, M.: Evolutionary algo-
rithms for constrained engineering problems. Computers and Industrial Engineer-
ing Journal 30 (1996) 851-870

Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.
Nature 406 (2000) 974-978

Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Com-
puter Programs. Second edn. McGraw-Hill (1996)

Angeline, P., Pollack, J.B.: Coevolving high-level representations. In Langton, C.,
ed.: Proceedings of the Third Workshop on Artificial Life, Reading, MA, Addison-
Wesley (1994)

Koza, J.R.: Genetic Programming: on the programming of computers by means of
natural selection. MIT Press, Cambridge, Mass. (1992)

Gruau, F.: Neural Network Synthesis Using Cellular Encoding and the Genetic
Algorithm. PhD thesis, Ecole Normale Supérieure de Lyon (1994)

Hornby, G.S.: Generative representations for evolving families of designs. In et al.,
E.C.P., ed.: Proc. of the Genetic and Evolutionary Computation Conference. LNCS
2724, Berlin, Springer-Verlag (2003) 1678-1689

Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative
representation for body-brain evolution. Artificial Life 8 (2002) 223-246

Hornby, G.S.: Generative Representations for Evolutionary Design Automation.
PhD thesis, Michtom School of Computer Science, Brandeis University, Waltham,
MA (2003)

